Tuesday, December 31, 2019

The Theory Of Motivation And Motivation - 1010 Words

Motivation is defined as an act or process that inspires and stimulates a person to be an effort to achieve a goal. It not only puts employees in act, but also makes them feel interesting with their job. As a result, most of employees are feeling satisfaction with their job, becoming creativity, innovation and productivity as well. However, to successful in motivating the staff is required an appropriate method that meets with all staff’s need. Otherwise, it is seems to useless in driving the employees. Specifically, there are many theories of motivation referred such as the theory of Abraham Maslow (the hierarchy of needs), Frederick Herzberg (the motivation-maintenance model), B.F Skinner (the reinforcement), Victor Vroom (the expectancy), Stacy Adams (the equity), Madeline Hunter (the intrinsic/extrinsic). In personal, I prefer to the theory of intrinsic/extrinsic as the best theory which be applied in order to generate a motivation in the company. The first early theory of motivation was the Hierarchy of needs which developed by Maslow. It announced that the human needs are consist of five types that developed in the order from low to high. It included the physiologic needs (foods, clothing, waster, shelter, homeostasis), the safety needs (job security, stability, freedom, fear and anxiety free), the belonging needs (need to be with other, social, or communicate), the status and self-esteem needs (need to be recognized, respected, and trust), and the highest level wasShow MoreRelatedMotivation Theory : Motivation And Motivation846 Words   |  4 PagesProfessor Jones Psychology April 28 2016 Motivation Theories Having motivation to do something is very important. Motivation plays a huge roll in everyone’s life, even If someone has very little motivation. There are several types of motivation such as Instinct and drive motivation. These two motivations are quite similar, but different at the same time. I will compare and contrast both of these types of motivation and what I think about them. These motivations are very important to your life and canRead MoreMotivation Theories Of Motivation And Motivation Essay1020 Words   |  5 Pages Overview of Presentation What is motivation? Cognitive theories of Motivation Forms of Motivation Motivation Theories Profile of Motivational Problems How to Motivate Students What is Motivation? Many different theorists have tried to define what is meant by motiviation. Urdan and Schoenfelder (2006) defined Motivation as follows: â€Å"Motivation is a complex part of human psychology and behavior that influences how individuals choose to invest their time, how much energy they exert in any givenRead MoreMotivation And Theory Of Motivation1464 Words   |  6 PagesIt is suggested by psychologists that motivation can be understood as a technique that works as a model that starts and maintains behaviours. The reason we all act or do something is caused by motivation; it is related to the emotions, biology and the social factors that influence behaviour. It is usually a term used to explain why an individual will do something, the reasons behind that action. Moreover, The term motivation refers to factors that activate, direct, and sustain goal-directed behaviourRead MoreTheories Of Motivation And Motivation Theories1493 Words   |  6 Pagesextent, needs of theories of motiv ation are still relevant to contemporary management practice. Theories of motivation are important as it helps managers to understand their employees’ needs of motivations, and to motivate their employees to perform and excel better. There are several motivation theories; this essay will briefly explain six major theories of motivation and discuss three of the theories in more detail. This essay will also explain the needs theories of motivation, and will focus onRead MoreThe Theory Of Motivation And Motivation1401 Words   |  6 Pages Schools of thought in relation to motivation refer to the theories developed by different psychologists to explain motivation in dept. it is crucial to understand motivation and the factors that cause it since it contributes to achievement of one’s goal and desires in life. Therefore, motivation can be described as the process of enticing an individual through a reward to increase the occurrence of a specified behavior in an organization. Different factors can be used as motivators in an organizationRead MoreMotivation Theories And Motivation Of Employee Motivation Essay1517 Words   |  7 Pagescontrol and some that are not. Employee motivation is something that can directly affect an organizations production. It is no secret that un-motivated employees equates to un-productive workers, but how can we combat this? In order to better understand this concept we will look at the definition of employee motivation, some of the motivation theories and some motivation techniques th at could be useful in our organizations. What is employee motivation? Motivation is a word used quite often in many differentRead MoreThe Importance Of Motivation And Motivation Theory1401 Words   |  6 Pagesperformance. Therefore motivation is one of the most complex and important topics in industrial and organizational psychology (Smither ,1997). The main purpose of this essay is to explain different kinds of motivation and why it is necessary, and create a proper motivation mechanism for the company. On the one hand, I studied current research and research different motivation theories. On the other hand, I will compare the common and different things among these motivation theories, and try to findRead MoreMotivation Theory And Expectancy Theory Of Motivation1742 Words   |  7 Pagesplace. This problem mainly occurs in organisation when there is lack of motivation, lack of organisational justice, negative culture and low morale. The purpose of this case study is to give brief view about, why employees had to face these problems and how to make positive culture and what and where the changes are required for the WA force. This report introduces MARS motivation theory and Expectancy theory of motivation for improves officers’ behaviours towards force, with that how can they fillRead MoreContent Theory Of Motivation And Motivation Essay787 Words   |  4 PagesQ1] Which content theory of motivation do you consider the most suitable in present business scenario and why? ANS:- There are two theories of motivation, namely Content theories and Process theories. Content theory deals with the ‘what’ aspect of motivation. It puts down points regarding what motivates people. Its focus is to point out the factors within a person that energize, direct, sustain and stop behaviour. It focuses on the specific behaviour that motivates people. Individual needs and goalsRead MoreNotes On Motivation Theory And Motivation3458 Words   |  14 PagesChapter 2: Literature review 2.1. Motivation theory Types of motivation According to Pritchard and Ashwood (2008: 6), motivation is the process used to allocate energy to maximize the satisfaction of needs. It requires that one have a reason to do something. Well-know researchers in this area Ryan and Deci (2010) believe that a person, who feels no drive or inspiration to act, can therefore be characterized as unmotivated, while someone who is energized toward a goal can be defined as motivated

Sunday, December 22, 2019

The Importance Of A Public Speaking On A Free Society And...

One of the most important skills that we can have is the skill of public speaking. Throughout life, no matter what profession, we have to use the skill of public speaking at some point. As a Christians, this skill becomes even more important. We must find ways to master and skillfully practice the art of public speaking in our society. Therefore it is important to understand what rationale can be offered for the significance of the art of public speaking in a free society and why it is especially important for Christians in particular. It is important to understand what the biblical model for a faithful speech and how to practice it. It is important to understand why listening is important to the Christian servant-speaker. It is important to understand what are ethical obligations as Christian servant-speakers are. It is important to understand how one’s faith can help Christian servant-speakers cope with the fear of public speaking. When we consider all of these elements comb ined, it is easier to understand the significance of public speaking for Christians. The first step to being a faithful Christian servant-speaker is recognizing what rationale can be offered for as to why the art of public speaking is significant in a free society and for Christians. The art of public speaking is significant in our free society, as Christians because God commands or calls us to speak out justly and to love merciful speech and to speak humbly with and for our God (pg. 13). In a societyShow MoreRelated Comparing Kant and Mill Essay913 Words   |  4 Pagesleads to the correct decisions. The public use of reason allows for these individuals to escape from the restrictions that the private sphere holds, restrictions which allow their own jobs to be completed as a benefit for the public. For Kant, the public use of reason is man’s assumption of the role of a scholar, one who places ideas â€Å"before the public for its judgment.† (Kant 43). It seems as tho ugh Kant’s use of rationality, however, involves simply speaking one’s mind and putting forth a certainRead MoreImmanuel Kants Theory Of Public Reasoning And Enlightenment1010 Words   |  5 Pagesremaining an important subject today. In Immanuel Kant’s 1784 essay, What Is Enlightenment? He touches upon topics of public vs. private reasoning and enlightenment. Kant’s goal was to acknowledge the limitations of free speech. Kant’s beliefs on enlightenment were different than any that existed during his time. Kant claimed true enlightenment can only be reached when a man steps out of his immature thinking and develops his own reasoning and understanding. For Kant, private vs public reasoning goesRead MoreThe Impact Of Public Education On The Advancement Of Women s Rights982 Words   |  4 Pages The role of public education in the advancement of women’s rights and ideas within Canada is incredibly influential. Contemporary public education br ings together the guidance and wisdom of instructors with the modern ideology of Canadian youth to create a hotbed of political discussion. With the guidance of a feminist teacher, a classroom can be transformed into a politically savvy force, pushing for the progression of women within Canadian society. Through my studies and volunteer activities,Read MoreJean-Jacques Rousseau and John Locke: Their Relevance for American Society 1811 Words   |  7 Pagesjurisdiction than another and is naturally free; in order to protect and preserve their lives, men must join a civil society. The sovereignty of the civil society is thus defined by its ability to make laws and protect individuals’ rights. Locke, believes that each individual has a right to life, liberty and property. Private property is so vital to Locke because man earns the right to property through labor which shows that not only are individual rights important, but also advancement of individual interestsRead MoreThe K eynes Solution By Paul Davidson Essay1678 Words   |  7 Pagesbeliefs that the government has the most important role in manipulating and stabilizing the behavior of the capitalist system to avoid and control recessions and depression in the market economy. And with that, he explained the strategies that the government may use to restore the prosperity in the twenty-first century. The first chapter of this book of Keynes solution is the â€Å"Power of ideas to affect the policy†, showed how they continuously warning the public about the current economic crisis situationRead MoreThe Impact Of The Salem Witch Trials1263 Words   |  6 Pages A particular primary source, â€Å"Accounts of the Salem Witchcraft Trials (1693)† by Cotton Mather, suggests that the actions brought forth provided proof of satanic work. Even though Mather was a contemporary observer, Mather fails to analyze the importance of the real contemporary issues displayed during the time of the trials. Furthermore, historian Kyle Koehler, takes a different approach in his review, â€Å"A search for Power: The â€Å"Weaker Sex† in Seventeenth-Century New England,† by believing the accusersRead MoreChristopher Hitchens s Views On Politics, Culture, Religion, And Literature1203 Words   |  5 Pagesportion of his time was spent actively expressing his opinions in televi sed debates, public forums, and university speeches. His interest in political science after graduating from Balliol College in Oxford molded his ideas into a general theme of â€Å"anti-authoritarianism.† This theme was very well imbedded into his career, for he wrote much about politics, culture, religion, and literature. As a critic of both society and religion, he attracted a wide range of college-aged intellectuals, including youngRead MoreHip Hop : A Cultural And Artistic Phenomenon868 Words   |  4 Pagesand conditions of their lives, speaking to them in a language and manner they understand. Defining the Hip Hop trend is not an easy task, trends are in essence very complex mechanisms that mirror changes in the economic and political landscapes. The Hip-Hop new trends, is a trend that isn’t genuinely taken as serious as it should be. This trend is very important but is only look at as the African American way to be free. People only think this trend isnâ€℠¢t important because it only focus on one raceRead MoreHow Special Education Has Changed Today s Society800 Words   |  4 Pagesdisabilities to be educated within public schools for free. Due to IDEA, children are no longer educated within residential centers, hospitals, homes, or special schools (Freiberg, 2016, p. 8). IDEA brought awareness to how not only children with disabilities want and should be treated, but how all people with disabilities should be. The first article in Unit One, â€Å"Why Can’t We Say â€Å"Handicapped?†, shares the importance of people first language within today’s society (Freiberg, 2016). People with disabilitiesRead MoreDemocratic Government: Is It Better? Essay1181 Words   |  5 PagesIn order for country to develop, or to keep up with the modern world and the institutions, it should have certain standards; and one of the most important is democracy. In the modern world where almost all of the countries, with the exemption of some governments that are still autocratic or socialists comes a common denominator and almost as a measure standard comes democracy. Several authors discuss about whether a democratic government is better than other that is not democratic, or if a country

Saturday, December 14, 2019

Hydraulic Design of Small Hydro Plants Free Essays

Version 2 STANDARDS/MANUALS/ GUIDELINES FOR SMALL HYDRO DEVELOPMENT Civil Works – Hydraulic Design Of Small Hydro Plants Lead Organization: Sponsor: Alternate Hydro Energy Center Indian Institute of Technology Roorkee Ministry of New and Renewable Energy Govt. of India May 2011 AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  1 1. GUIDELINES FOR HYDRAULIC DESIGN OF SMALL HYDRO PLANTS This section provides standards and guidelines on the design of the water conductor system. We will write a custom essay sample on Hydraulic Design of Small Hydro Plants or any similar topic only for you Order Now This system includes; head works and intake, feeder canal, desilter (if required), power canal or alternative conveyance structures (culverts, pipelines, tunnels, etc), forebay tank, penstock and surge tank (if required) up to the entry of the turbine, tailrace canal below the turbine and related ancillary works. 1. 1 HYDRAULIC DESIGN OF HEAD WORKS In general head works are composed of three structural components, diversion dam, intake and bed load sluice. The functions of the head works are: Diversion of the required project flow from the river into the water conductor system. Control of sediment. Flood handling. Typically a head pond reservoir is formed upstream of the head works. This reservoir may be used to provide daily pondage in support of peaking operation or to provide the control volume necessary for turbine operation in the water level control mode. This latter case would apply where the penstock draws its water directly from the head pond. Sufficient volume must be provided to support these functions. There are three types of head works that are widely used on mini and small hydro projects, as below: Lateral intake head works Trench intake head works Reservoir / canal intakes Each type will be discussed in turn. 1. 1. 1 Head Works with Lateral Intakes (Small Hydro) Head works with lateral intakes are typically applied on rivers transporting significant amounts of sediment as bed load and in suspension. The functional objectives are: To divert bed-load away from the intake and flush downstream of the dam (the bed load flushing system should be operable in both continuous and intermittent modes). To decant relatively clean surface water into the intake. To arrest floating debris at intake trashracks for removal by manual raking. To safely discharge the design flood without causing unacceptable upstream flooding. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  2 The following site features promote favourable hydraulic conditions and should be considered during site selection: The intake should be located on the outside of a river bend (towards the end of the bend) to benefit from the spiral current in the river that moves clean surface water towards the intake and bed load away from the intake towards the centre of the river. The intake should be located at the head of a steeper section of the river. This will promote removal of material flushed through the dam which may otherwise accumulate downstream of the flushing channel and impair its function. Satisfactory foundation conditions. Ideal site conditions are rare, thus design will require compromises between hydraulic requirements and constraints of site geology, accessibility etc. The following guidelines assume head works are located on a straight reach of a river. For important projects or unusual sites hydraulic model studies are recommended. A step by step design approach is recommended and design parameters are suggested for guidance in design and layout studies. Typical layouts are shown in Figures 2. 2. 1 to 2. 2. 3. 1. 1. 2 Data Required for design. The following data are required for design: Site hydrology report as stipulated in Section 1. 3 of this Standard giving: – Qp (plant flow) – Q100 (design flood flow, small hydro) – Q10 (design flood flow, mini hydro) (data on suspended sediment loads) – Cw – H-Q Curves (W. L. rating curves at diversion dam) Topographic mapping of the site including river bathymetry covering all head works structure sites. Site geology report. 1. 1. 3 Site Selection: Selection of the head works site is a practical decision which involves weighing of several factors including hydraulic desiderata (Section 2. 2. 1/1. 0), head optimization, foundation conditions, accessibility and constructability factors. Given the importance of intake design to the overall performance of the plant it is recommended that an experienced hydraulic engineer be consulted during studies on head works layout. 1. 1. 4 Determination of Key Elevations: AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  3 For the illustrative example: Qp = 10. 0 m3/s Determine V0 = 0. 5 Q0. 2 (= 0. 792, say 0. 80 m/s) (= 12. 5 m2) A0 = Q ? V0 A0 H= (= 1. 77 m, say 1. 80 m) 4 Assume L = 4H (= 7. 08 m, say 7. 0 m) ye = greater of 0. 5 yo or 1. 5 m (= 1. 80m) yd = L. S (= 0. 28 m) NOL = Z0 + ye + yd + H NOL = 97. 5 + 1. 80 + 0. 28 + 1. 80 (=101. 38m, say 101. 50 m) Sill = NOL – H (= 99. 7m) Crest of weir or head pond NOL = 101. 5 m Height of weir = 4. 0 m These initial key elevations are preliminary and may have to be adjusted later as the design evolves. 1. 1. 5 Head Works Layout The entry to the intake should be aligned with the river bank to provide smooth approach conditions and minimize the occurrence of undesirable swirl. A guide wall acting as a transition between the river bank and the structure will usually be required. Intake hydraulics are enhanced if the intake face is slightly tilted into the flow. The orientation of the intake face depends on river bank topography, for straight river reaches the recommended values for tilt vary from 10o to 30o depending on the author. When this angle becomes too large the intake will attract excessive amounts of sediment and floating debris. It is recommended that the sill level of the intake is kept sufficiently higher than the sill level of the under sluice. The under sluice should be located adjacent to the intake structure. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  4 For development of the head work plan, it is recommended that the following parameters be used for layout: Axis of intake should between 100 ° to 105 ° to axis of diversion structure The actual inclination may be finalized on the basis of model studies. Divide wall, if provided, should cover 80% to 100% of the intake. Assume flushing flow equal to twice project flow then estimate the width and height of the flushing gate from orifice formula,: Example should be in appendix. Qf = 0. 6 ? 0. 5W2 Where: Qf = flushing flow W = gate width H = gate height (= 0. 5W) Yo = normal flow depth as shown in 2. 2. 1. 1/2. 0 Sill should be straight and perpendicular to the flow direction. In the sample design (Fig. 2. 2. 1. 1) the axis of the intake = 105 ° Qf = 2. 0? 10. 0 = 20m3/s ? 20. 0 = 0. 6 ? 0. 5 W2 ? W = 2. 8 m (say 3. 0m) and H = 1. 5 m. 1. 1. 6 Flood Handling, MFL and Number of Gates. For small hydro a simple overflow diversion weir would be the preferred option if flood surcharge would not cause unacceptable upstream flooding. For purpose of illustration, the following design data are assumed (see Figure 2. 2. 2): Design flood, Q100 = 175 m3/s A review of reservoir topography indicated that over bank flooding would occur if the flood water level exceeded 103. 0 m. Select this water level as the MFL. This provides a flood surcharge (S) of 1. 20 m. Assume weir coefficients as below: Gate, Cw = 1. 70 – – – sill on slab at river bottom. Weir, Cw = 1. 0 – – – – – – -ogee profile. Assume gate W/H ratio = 1:2 H = 4. 0 m ? W = 4. 8 (say 5. 0 m) MFL. = NOL + 1. 50 (= 103. 0m) Qgate = Cw. W. (MFL – ZS)1.. 5 Qweir = Cw. Lw. S1. 5 Capacity check for MFL = 103. 0 m No. of Length of Overflow QG Gates Section (m) (m3/s) 0 35. 0 0. 0 1 29. 0 109. 6 QW (m3/s) 82. 8 68. 6 QT (m3/s) 82. 8 178. 2 175 AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  5 Therefore one gate is sufficient. Where: MFL = Maximum flood level (m) NOL = Normal operating level (m) S = flood surcharge above NOL (m) W = width of gate (m) H = height of gate (m) ZS = elevation of gate sill (m) = weir coefficient (m0. 5s-1) Cw QG, QW, QT = gate, weir and total flows The flow capacity of the sediment flushing gate may also be included in calculating flood handling capacity. 1. 1. 7 Diversion structure and Spillway Plains Rivers: Stability of structures founded on alluvial foundations typical of plains rivers, is governed by the magnitude of the exit gradient. The critical gradient is approximately 1. 0 and shall be reduced by the following safety factors: Types of foundation Shingles / cobbles Coarse sand Fine sand Safety factor 5 6 7 Allowable Exit Gradient 0. 20 0. 167 0. 143 Also diversion structures on plains rivers will normally require stilling basins to dissipate the energy from the fall across the diversion structure before the water can be returned safely to the river. Design of diversion weirs and barrages on permeable foundation should follow IS 6966 (Part 1). Sample calculations in Chapter 12 of â€Å"Fundamentals of Irrigation Engineering† (Bharat Singh, 1983) explain determination of uplift pressure distributions and exit gradients. Further details on structural aspects of design are given in Section 2. 3. 3 of this Standard. Mountain Rivers: Bedrock is usually found at relatively shallow depths in mountain rivers permitting head works structures to be founded on rock. Also the beds of mountain rivers are often boulder paved and are much more resistant to erosion than plains rivers. Therefore there may be no need for a stilling basin. The engineer may consider impact blocks on the downstream apron or simply provide an angled lip at the downstream end of the apron to â€Å"flip† the flow away from the downstream end of the apron. A cut-off wall to bed rock of suitable depth should AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  6 also be provided for added protection against undermining by scour. The head works structures would be designed as gravity structures with enough mass to resist flotation. For low structures height less than 2. 0 m anchors into sound bedrock may be used as the prime stabilization element in dam design. Stability and stress design shall be in accordance with requirements of Section 2. 3. 3 of this Standard. 1. 1. 8 Sediment Flushing Channel To be reviewed The following approach is recommended for design of the flushing channel: Select flushing channel flow capacity (Qf) = 2? Qp Estimate maximum size of sediment entering the pocket from site data or from transport capacity of approaching flow and velocity. In case of diversion weir without gates assume sediment accumulation to be level with the weir crest. (Assume continuous flushing with 3? Qp entering the pocket, for this calculation). Establish entrance sill elevation and channel slope assuming an intermittent flushing mode (intake closed) with Qs = 2Qp, critical flow at the sill, supercritical flow downstream (FN ? 1. 0) and a reservoir operating level 0. 5m below NOL. Determine slope of channel to provide the required scouring velocity, using the following formula which incorporates a safety factor of 1. 5: i = 1. 50 io d 9/7 i0 = 0. 44 6 / 7 q Where: io = critical scouring velocity d = sediment size q = flow per unit width (m3/s per m) Verify that flow through pocket in continuou s flushing mode (Qs = 3Qs) will be sub critical, if not lower entrance sill elevation further. Determine height of gate and gate opening based on depth of flow at gate location and corresponding gate width. Increase the above theoretical gate height by 0. 5 m to ensure unrestricted open channel flow through the gate for intermittent flushing mode and a flushing flow of 2 Qp. For initial design a width to height ratio of 2:1 for the flushing gate is suggested. 1. 1. 9 Intake/Head Regulator: In intake provides a transition between the river and the feeder canal. The main design objectives are to exclude bed-load and floating debris and to minimize head losses. The following parameters are recommended: Approach velocity at intake entrance (on gross area) 0. 20 Ve = 0. 5 Q p m / s For trashracks that are manually cleaned, V should not exceed 1. 0 m/s. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  7 Convergence of side walls 2. 5:1 with rate of increase in velocity not exceeding 0. 5 m/s per linear m. †¢ Height of sill above floor of flushing channel (ye) = greater of 1. 5m or 50% flow depth. †¢ The floor of the transition should be sloped down as required to join the invert of the feeder canal. Check that the flow velocity in the transition is adequate to prevent deposition in the transition area. If sediment loads are very high consider installing a vortex silt ejector at the downstream end of the transition. Provide coarse trashracks to guard entry to the head gate. The trashrack would be designed to step floating debris such as trees, branches, wood on other floating objects. A clear spacing of 150 mm between bars is recommended. Trashrack detailed design should be in accordance with IS 11388. †¢ The invert of the feeder canal shall be determi ned taking into consideration head losses through the trashrack and form losses through the structure. Friction losses can be omitted as they are negligible: V2 Calculate form losses as: H L = 0. 3 2 2g Where: V2 = velocity at downstream end of contraction. Calculate trashrack losses as: 4/3 V2 ?t? H L = K f ? ? . Sin? . 2g ?b? Where: Kf = head loss factor (= 2. 42 assuming rectangular bars) T = thickness of bars (mm) B = clear bar spacing (mm) ? = angle of inclination to horizontal (degrees) V = approach velocity (m/s) 1. 1. 10 References on Lateral Intakes and Diversion Weirs. IS Standards Cited: IS 6966 (Part 1) IS 11388 USBR (1987) Singh, Bharat Nigam, P. S. Hydraulic Design of Barrages and Weirs – Guidelines Recommendations for Design of Trashracks for Intakes Design of Small Dams Fundamentals of Irrigation Engineering Nem Chand Bros. Roorkee (1983) Handbook of Hydroelectric Engineering (Second edition) †¦.. pages 357 to 365 Nem Chand Bros. – Roorkee (1985) 1. 1. 11 Other References: Bucher and Krumdieck Guidelines for the Design of Intake Structures for Small Hydro Schemes; Hydro ’88/3rd International Conference on Small Hydro, Cancun – Mexico. Bouvard, M. Mobile Barrages and Intakes on Sediment Transporting AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  8 Razvan, E. 1. 2. Rivers; IAHR Monograph, A. A. Balkema – Rotterdam (1992) River Intakes and Diversion Dams Elsevier, Amsterdam (1988) SEMI PERMANENT HEADWORKS (MINI HYDRO) For mini hydro projects the need to minimize capital cost of the head works is of prime importance. This issue poses the greatest challenge where the head works have to be constructed on alluvial foundations. This challenge is addressed by adoption of less rigorous standards and the application of simplified designs adapted to the skills available in remote areas. A typical layout is shown in Figure 2. 2. 3. 1. 2. 1 Design Parameters Hydraulic design should be based on the following design criteria: Plant flow Qp) = QT + QD Where: QT = total turbine flow (m3/s) QD = desilter flushing flow (= 0. 20 QT) m3/s QFC = feeder canal flow (= 1. 20 QT) m3/s QF = gravel flushing flow (= 2. 0 QP) Spillway design flow (SDF) = Q10 Where: Q10 = flood peak flow with ten year return period. 1. 2. 2 Layout ? To be reviewed Intake approach velocity = 1. 0 m/s Regulator gate W/H = 2 Flushing channel depth (HD) = 2H + W/3 Flushing channel m inimum width = 1. 0 m Assumed flushing gate W/H = 2, determine H from orifice equation, as below: Q f = 0. 53? 2 H 2 . 2 gY1 Y1 = HD for design condition Where: W width of gate (m) H = height of gate (m) Yi = upstream depth (m) = depth of flushing channel (m) HD Select the next largest manufactures standard gate size above the calculated dimensions. 1. 2. 3 Weir AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  9 Determine weir height to suit intake gate and flushing gate dimensions, as shown in Figure 2. 2. 3. For weirs founded on permeable foundations the necessary structure length to control failure by piping should be determined in accordance with Section 2. 2. 1/4. 1 of this Standard. A stepped arrangement is recommended for the downstream face of the weir to dissipate hydraulic energy. The height of the steps should not exceed 0. 5 m and the rise over run ratio should not less than 1/3, the stability of the weir cross-section design should be checked for flotation, over turning and sliding in accordance with Section 2. 3. 1. 1. 3 TRENCH INTAKES Trench intakes are intake structures located in the river bed that draw off flow through racks into a trench which conveys the flow into the project water conductor system. A characteristic of trench intakes is that they have minimum impact on river levels. Trench intakes are applied in situations where traditional headwork designs would be excessively expensive or result in objectionable rises in river levels. There are two quite different applications: on wide rivers and on mountainous streams, but the basic equations are the same for both types. The trench intake should be located in the main river channel and be of sufficient width to collect the design project flow including all flushing flows. If the length of the trench is less than the width of the river, cut off walls will be required into each bank to prevent the river from bypassing the structure. Trench weirs function best on weirs with slopes greater than 4%-5%, for flatter slopes diversion weirs should be considered. The spacing between racks is selected to prevent entry of bed load into the trench. The following terms are sometimes used in referring to trench intake designs. Trench weir, when the trench is installed in a raised embankment. †¢ Tyrolean or Caucasian intakes, when referring to trench intakes on †¢ mountainous streams. Features: AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  10 1. 3. 2 Design Parameters The following design parameters are suggested for the dimensioning of trench weirs. †¢ Design Flows: The following design flows are recommended: Bedload flushing flow (from collector box) = 0. 2 QT †¢ Desilter flushing flow = 0. 2 QT †¢ Turbine flow = 1. 0 QT †¢ Total design flow †¢ = 1. 4 QT Dimensional Layout AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  11 The following factors should be considered in determining the principal dimensions: length, breadth and depth of a trench weir: Minimum width (B)= 1. 25 m (to facilitate manual cleaning) Length should be compatible with river cross section. It is †¢ recommended that the trench be located across main river channel. Maximum width (B) ? 2. 50m. Trashrack bars longer than about 2. 50 m †¢ may require support as slenderness ratios become excessive. Invert of collector box should be kept a high as possible. †¢ †¢ Racks à ¢â‚¬ ¢ †¢ †¢ †¢ The clear spacing between bars should be selected to prevent entry of bed-load particles that are too large to be conveniently handled by the flushing system. Generally designs are based on excluding particles greater than medium gravel size from (2 cm to 4 cm). A clear opening of 3. 0 cm is recommended for design. A slope across the rack should be provided to avoid accumulation of bed load on the racks. Slopes normally used vary from 0 ° to 20 °. Rectangular bars are recommended. Bar structural dimension shall be designed in accordance with Section 2. 2. 1/5. 0 of this Standard. An appropriate contraction coefficient should be selected as explained in the following sub-section. Assume 30% blockage. Spacing between racks is designed to prevent the entry of bedload but must also be strong enough to support superimposed loads from bedload accumulation, men and equipment. This issue is discussed further in Subsection 2. 2. 3 / 2. 0. 1. 3. 3 Hydraulic Design of Trench Intake The first step in hydraulic design is to decide the width of the trench intake bearing in mind the flow capacity required and the bathymetry of the river bed. The next step in hydraulic design is to determine the minimum trench breadth (B) that will capture the required design flow. The design approach assumes complete capture of river flow, which implies, that river flow is equal to plant flow for the design condition. Hydraulic design is based on the following assumptions: Constant specific energy across racks. †¢ Effective head on screen is equal to base pressure (depth) †¢ Approach velocity is subcritical with a critical section at the entry to the structure as shown in figure 2. 2. 3/1. The set of equations proposed is based on the method given by Lauterjung et al (1989). †¢ First calculate y1: AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraul ic Design Of Small Hydro Plants /May 2011  Ã‚  12 2 y 1 = k. H0 3 – – – – – – – – – – – (1) Where: y1 = depth at upstream edge of rack Ho = the energy head of the approaching flow k = an adjustment factor (m) m) (-) k is a function of inclination of the rack and can be determined from the following table: Values of k as a Function of Rack Slope (? ) Table: 2. 2. 1/1 ? = 0 ° 2 ° 4 ° 6 ° 8 ° 10 ° 12 ° k = 1. 000 0. 980 0. 961 0. 944 0. 927 0. 910 0. 894 ? = 14 ° 16 ° 18 ° 20 ° 22 ° 24 ° 26 ° k = 0. 879 0. 865 0. 851 0. 837 0. 852 0. 812 0. 800 Then calculate the breadth of the collector trench from the following equations (2) to (4) 1. 50 q – – – – – – – – – – – – – – (2) L= E1. E 2 C. cos? 3/2 . 2gy 1 Where: L = sloped length across collector trench (m) E1 = blockage factor E2 = Eff ective screen area = e/m C = contraction coefficient ? = slope of rack in degrees y1 = flow depth upstream from Equation 1. (m) q = unit flow entering intake (m3/s per m) e = clear distance between bars (cm or m) m = c/c spacing of bars (cm or m) Assume E1 = 0. 3 (30%) blockage. â€Å"C† can be calculated from the following formula (as reported by Raudkivi) Rectangular bars: ?e? C = 0. 66 ? ? ?m? ?0. 16 ?m? .? ? ?h? 0. 13 Assume h = 0. 5 y1. This formula is valid for 3. 5 – – – – – – – – – – – – – (3) h e 0. 2 and 0. 15 0. 30 m m Finally, the required breadth (B) can be determined as below: B = L cos ? – – – – – – – – – – – – -(4) AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  13 1. 3. 4 Hydraulic Design of Collector Trench Normally a sufficient slope on the i nvert of the trench is provided to ensure efficient flushing of bed-load particles that would otherwise accumulate on the invert of the trench. A suitable scouring slope can be estimated from the following equation: Ss = 0. 66 d 9 / 7 6/7 qo Where: d = sediment size (m) qo = flow per unit width (Q/B) at outlet of trench (m3/s per m) Ss = design slope of trench invert. The minimum depth of the trench at the upstream and is normally between 1. 0m to 1. 5 m, based on water depth plus a freeboard of 0. 3 m. For final design the flow profile should be computed for the design slope and the trench bottom profile confirmed or adjusted, as required. A step-by-step procedure for calculating the flow profile that is applicable to this problem can be found in Example 124, page 342-345 of â€Å"Open-Channel Hydraulics† by Ven. T. Chow (1959). In most cases the profile will be sub critical with control from the downstream (exit) end. A suitable starting point would be to assume critical flow depth at the exit of the trench. 1. 3. 5 Collector Chamber The trench terminates in a collector box. The collection box has two outlets, an intake to the water conductor system and a flushing pipe. The flushing pipe must be design with the capacity to flush the bed-load sediment entering from the trench, while the project flow is withdrawn via the intake. The bottom of the collection box must be designed to provide adequate submergence for the flushing pipe and intake to suppress undesirable vortices. The flushing pipe should be lower than the intake and the flushing pipe sized to handle the discharge of bed load. If the flushing pipe invert is below the outlet of the trench, the Engineer should consider steepening the trench invert. If the trench outlet invert is below the flushing pipe invert, the latter should be lowered to the elevation of the trench outlet or below. The deck of the collector box should be located above the design flood level to provide safe access to operate gates. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  14 1. 3. Flushing Pipe The flushing pipe should be designed to provide a high enough velocity to entrain bed-load captured by the weir. A velocity of at least 3. 0 m/s should be provided. If possible, the outlet end of the pipe should be located a minimum of 1. 0m above the river bed level to provide energy to keep the outlet area free from accumulation of bed load that could block t he pipeline. 1. 3. 7 References on Trench weirs CBIP, (2001): Manual on Planning and Design of Small Hydroelectric Scheme Lauterjung et al (1989): Planning of Intake Structures Freidrich Vieweg and Sohn, Braunswchweig – Germany IAHR (1993): Hydraulic Structures Design Manual: Sedimentation: Exclusion and Removal of Sediment from Diverted Water. By: Arved J. Raudkivi Publisher: Taylor Francis, New York. Chow (1959): Open- Channel Hydraulics Publisher: McGraw-Hill Book Company, New York. 1. 4 RESERVOIR, CANAL AND PENSTOCK INTAKES The designs of reservoir, canal and penstock intakes are all based on the same principles. However, there are significant variations depending on whether an intake is at the forebay reservoir of a run-of-river plant or at storage reservoir with large draw down or is for a power tunnel, etc. Examples of a variety of layouts can be fond in IS 9761 Hydropower Intakes – Criteria for Hydraulic Design or Guidelines for Design of Intakes for Hydropower Plants (ASCE, 1995). The features common to all designs are shown in the following sketch: AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  15 The objectives of good design are: To prevent entry of floating debris. †¢ To avoid formation of air entraining vortices. †¢ To minimize hydraulic losses. †¢ 1. 4. 1 Control of floating debris To prevent the entry of debris a trashrack is placed at the entry to the intake. For small hydro plants the trashrack overall size is determined based on an approach velocity of 0. 75 m/s to 1. 0m/s to facilitate manual raking. Trashracks may be designed in panels that can be lowered into place in grooves provided in the intake walls or permanently attacked to anchors in the intake face. The trashracks should to sloped at 14 ° from the vertical (4V:1H) to facilitate raking. The spacing between bars is determined as a function of the spacing between turbine runner blades. IS 11388 Recommendations for Design of Trashracks for Intakes should be consulted for information about spacing between trashracks bars, structural design and vibration problems. Also, see Section 2. 2. 1/5 of this Standard. 1. 4. 2 Control of Vortices First of all the direction of approach velocity should be axial with respect the intake if at all possible. If flow approaches at a significant angle (greater than 45o) AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  16 from axial these will be significant risk of vortex problems. In such a situation an experienced hydraulic engineer should be consulted and for important projects hydraulic model studies may be required. For normal approach flow the submergence can be determined from the following formulae: S = 0. 725VD0. 5 S D V = submergence to the roof of the gate section (m) = diameter of penstock and height of gate (m) = velocity at gate for design flow. (m/s) Where: A recent paper by Raghavan and Ramachandran discusses the merits of various formulae for determining submergence (S). 1. 4. 3 Minimization of Head losses Head losses are minimized by providing a streamlined transition between the entry section and gate section. Minimum losses will be produced when a streamlined bellmouth intake is used. For a bellmouth intake the transition section is formed with quadrants of ellipses as shown in the following sketch. The bellmouth type intake is preferred when ever the additional costs are economically justified. For smaller, mainly mini hydropower stations, simpler designs are often optimal as the cost of construction of curved concrete surfaces may not be offset by the value of reduction in head losses. Details on the geometry of both types are given †¢ Bellmouth Intake Geometry Geometries for typical run-of-river intakes are shown below: A gate width to height of 0. 785 (D): 1. 00 (H) with H = D is recommended. This permits some reduction in the cost of gates without a significant sacrifice in hydraulic efficiency. There is a second transition between the gate and penstock, rectangular to circular. For a gate having H = D and W= 0. 785D the flow velocity at the gate will be equal to the velocity in the penstock so no further flow acceleration is produced in this section. A length for this transition of 1. x D should be satisfactory. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  17 The head loss co-efficient for this arrangement in Ki =0. 10 Details for layout of bell mouth transitions connecting to a sloping penstock are given in IS9761. †¢ Simplified layout (Mini-Hydro): For smaller/mini hydro project s intake design can be simplified by forming the transition in plane surfaces as shown below: The head loss for this design (Ki) = 0. 19V2/2g. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  18 . 4. 4. AIR VENT An air vent should be placed downstream of the head gate to facilitate air exchange between atmosphere and the penstock for the following conditions: †¢ Penstock filling when air will be expelled from the penstock as water enters. †¢ Penstock draining when air will enter the penstock to occupy the space previously filled by water. The air vent (pipe) must have an adequate cross section area to effectively handle these exchanges of air. The following design rules are recommended: Air vent area should the greater of the following values Where: (m3/s) AV = 0. 0 Ap or QT AV = 25. 0 (m2) AV = cross-section area of air vent pipe AP = cross-section area of penstock (m2) QP = turbine rated flow ( ? QT of m ore than one turbine on the penstock) The air vent should exhaust to a safe location unoccupied by power company employees on the general public. 1. 4. 5 PENSTOCK FILLING A penstock should be filled slowly to avoid excessive and dangerous â€Å"blowback†. The recommended practice is to control filling rate via the head gate. The AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  19 ead gate should not be opened more than 50 mm until the penstock is completely full. (This is sometime referred to as â€Å"cracking† the gate. ) 1. 4. 6 REFERENCES ON PENSTOCK INTAKES: †¢ 1. 4. 7 Indian Standard Cited. IS 9761: Hydropower Intakes – Criteria for Hydraulic Design OTHER REFERENCES †¢ Guidelines for Design of Intakes for Hydroelectric Plants ASCE, New York (1995) †¢ Validating the Design of an Intake Structure : By Narasimham Raghavan and M. K. Ramachandran, HRW – September 2007. â₠¬ ¢ Layman’s Guidebook European Small Hydro Association Brussels, Belgium (June 1998) Available on the internet. †¢ Vortices at Intakes By J. L. Gordon Water Power Dam Construction April 1970 1. 5. TRASHRACKS AND SAFETY RACKS 1. 5. 1 Trashracks: Trashracks at penstock intakes for small hydro plants should be sloped at 4 V: 1H to facilitate manual raking and the approach velocity to the trashracks limited to 1. 0 m/s or less. Use of rectangular bars is normal practice for SHP’s. Support beams should be alignment with the flow direction to minimize hydraulic losses. Detailed trashrack design should be done in accordance with IS 11388. 1. 5. 2 Safety Racks: Safety racks are required at tunnel and inverted siphon entries to prevent animals or people who may have fallen into the canal from being pulled into these submerged water ways. A clear spacing of 200 mm between bars is recommended. Other aspects of design should be in accordance with IS 11388. 1. 5. 3 References on Trashracks IS11388 – â€Å"Recommendations for Design of Trashracks for Intakes†. ASCE (1995) –â€Å"Guidelines for Design of Intakes for Hydroelectric Plants†. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  20 DRAWINGS: AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  21 AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  22 2. HYDRAULIC DESIGN OF WATERWAYS The waterways or water conduction system is the system of canals, aqueducts, tunnels, inverted siphons and pipelines connecting the head works with the forebay tank. This Section provides guidelines and norms for the hydraulic design of these structures. 2. 1 2. 1. 1 CANALS Canals for small hydro plants are typically constructed in masonry or reinforced concrete. Several typical cross section designs are shown below: AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  23 Lined canals in earth, if required, should be designed in accordance with Indian Standard: IS 10430. A further division of canal types is based on function: – Feeder canal to connect the head regulator (intake) to the desilter – Power canal to connect the desilter to the Forebay tank. 2. 1. 2 Feeder Canals 2. 1. 2. 1 Feeder canal hydraulic design shall be based on the following criteria: = Turbine flow (QT) + Desilter flushing flow (QF). Design flow (Qd) AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  24 2. 1. 2. 2 Scouring velocity: A sufficiently high velocity must be provided to prevent deposition of sediment within the canal. This (scouring) velocity can be determined from the following formulae: d 9/7 S C = 0. 66 6 / 7 n = 0. 015 q 1 1 ? VS = . R 2 / 3 . S C/ 2 n Where: Sc = Scouring slope d = Target sediment size (m) q = Flow per unit width (Q/W) (m/s/m) R = hydraulic radius (m) Vs = scouring velocity (m/s) n = Manning’s roughness coefficient 2. 1. 2. 3 Optimization: The optimum cross section dimensions, slope and velocity should be determined by economic analysis so as to minimize the total life time costs of capital, OM and head losses (as capitalized value). The economic parameters for this analysis should be chosen in consultation with the appropriate regional, state or central power authorities these parameters include: – Discount rate (i) – Escalation rate(e) – Plant load factor – Service life in years (n) – Annual O+M for canal (% of capital cost) – Value of energy losses (Rs/kWh). Also see Section 1. 7 of this Standard. The selected design would be based on the highest of Vs or Voptimum. . 1. 2. 4 Freeboard: A freeboard allowance above the steady state design water level is required to contain water safely within the canal in event of power outages or floods. A minimum of 0. 5 m is recommended. 2. 1. 3 Power Canals: Power canal design shall be based on the following criteria a) Design flow = total turbine flow (QT) b) Power canal design should be based on optimization of dimensions, slope and velocity, as explained in the previous section. For mini-hydro plants Q 2. 0 m3/s optimal geometric design dimensions for Type 1 (masonry construction) can be estimated by assuming a longitudinal slope of 0. 04 and a Manning’s n value of 0. 018. Masonry construction would normally be preferred for canals with widths (W) less than 2. 0 m (flow area = AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  25 2. 0 m2). For larger canals with flow areas greater than 2. 0m2, a Type 3, box culvert design would be preferred – based on economic analysis. c) Freeboard: A freeboard allowance above the steady state design level is required to contain water safety within the canal in event of power outages. The waterway in most SHP’s terminates in a Forebay tank. This tank is normally equipped with an escape weir to discharge surplus water or an escape weir is provided near to the forebay tank. For mini-hydro plants a minimum freeboard of 0. 50 m is recommended. The adequacy of the above minimum freeboard should be verified for the following conditions: †¢ Maximum flow in the power canal co-incident with sudden outage of the plant. †¢ Design flow plus margins for leakage losses (+0. 02 to +0. 05 QT) and above rated operation (+ 0. 1QT). †¢ Characteristics of head regulator flow control. The freeboard allowance may be reduced to 0. 5 m after taking these factors into consideration. The maximum water level occurring in the forebay tank can be determined from the weir equation governing flow in the escape weir. 2. 1. 4 Rejection Surge Designs which do not incorporate downstream escape weirs would be subject to the occurrence of a rejection surge in the canal on sudden turbine shutdown, giving above static water levels at the downs tream end, reducing to the static level at the upstream (entry) end of the water way. Methods for evaluating water level changes due to a rejection surge are explained in Section 2. 2. 2 / 7. 0 of this Standard. . 2 AQUEDUCTS Aqueducts are typically required where feeder or power canals pass over a gully or side stream valley. If the length of the aqueduct is relatively short the same channel dimensions as for the canal can be retained and there would be no change in hydraulic design. For longer aqueducts design would be based on economic analysis subject to the proviso that flow remains sub critical with NF ? 0. 8 in the flume sections. The following sketch shows the principal dimension of aqueduct entry and exit transitions and flume section. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  26 The changes in invert elevation across the entry and exit structures can be calculated by Bernouli’s equation as below: †¢ Entry transition – consider cross – section (1) and (2); V2 V2 Z 1 + D + 1 = Z 2 + d + 2 + hL 2g 2g and 2 †¢ b? V ? hL = 0. 10 ? 1 ? ?. 2 ? B ? 2g Z2 can be determined from the above equations, since all geometrical parameters are known. Flume – Sections (2) to (3) The slope of the flume section is determined from Manning’s equation 2 †¢ ? Vn ? ( S ) = ? 2 / 3 ? . A Manning’s n = 0. 018 is suggested for concrete channels. ?R ? Some designers increase this slope by 10% to provide a margin of safety on flow capacity of the flume. Exit transition – consider cross section (3) and (4): V2 V2 Z 3 + d + 3 = Z 4 + D + 4 + hL 2g 2g AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  27 and 2 b? V ? hL = 0. 20 ? 1 ? ?. 3 ? B ? 2g Z4 can be determined from the above equations, since all geometrical parameters are known. The same basic geometry can be adapted for transition between trapezoidal canals sections and rectangular flume section, using mean flow width (B) = A/D. . 3. INVERTED SYPHONS 2. 3. 1 Inverted syphons are used where it is more economical to route the waterway underneath an obstacle. The inverted syphon is made up of the following components: †¢ Entry structure †¢ Syphon barrels †¢ Exit structure †¢ Entry Structure: Hydraulic design of the entry structure is similar to the design of reservoir, canal and penstock intakes. Follow the guidelines given in Section 2. 2. 2/2. of this Standard. †¢ Syphon barrels: The syphon barrel dimensions are normally determined by optimization ? V? ? does not tudies, with the proviso that the Froude Number ? N F = ? gd ? ? ? exceed 0. 8. Invert elevations are determined by accounting for head losses from entry to exit of the structure using Bernouli’s equation. For reinforced concrete channels a Manning’s â€Å"n† value of 0. 018 is recommended. The head loss coefficients for mitre bends can be determined from USACE HDC 228. 2. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  28 AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  29 Exit structure: The exit structure is designed as a diverging transition to minimize head losses; the design is similar to the outlet transition from flume to canal as discu ssed in Subsection 2. 2. 2/2 of this Standard. The following sketches show the layout of a typical inverted siphon. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  30 2. 3. 2 Reference on Aqueducts and Inverted Syphons â€Å"Hydraulic Structures† By C. D. Smith University of Saskatchewan Saskatoon (SK) Canada 2. 4. LOW PRESSURE PIPELINES Low pressure pipelines may be employed as an alternative to pressurized box culverts, aqueducts or inverted syphons. Concrete, plastic and steel pipes are suitable depending on site conditions and economics. Steel pipe is often an attractive alternative in place of concrete aqueducts in the form of pipe bridges, since relatively large diameter pipe possesses significant inherent structural strength. Steel pipe (with stiffening rings, as necessary), concrete and plastic pipe also have significant resistance against external pressure, if buried, and offer alternatives to inverted syphons of reinforced concrete construction. Generally pressurized flow is preferred. The pipe profile should be chosen so that pressure is positive through out. If there is a high point in the line that could trap air on filling an air bleeder valve should be provided. Otherwise, hydraulic design for low pressure pipelines is similar to the requirements for inverted syphons. The choice of type of design; low pressure pipeline land pipeline material), inverted syphon or aqueduct, depends on economic and constructability considerations, in the context of a given SHP. Manning’s â€Å"n† Values for selected Pipe Materials Material Welded Steel Polyethylene (HDPE) Poly Vinyl Chloride (PVC) Asbestos Cement Cast iron Ductile iron Precast concrete pipe Manning’s â€Å"n† 0. 012 0. 009 0. 009 0. 011 0. 014 0. 015 0. 013(2) Note: (1) From Table 5. 4 Layman’s Guide Book – ESHA (2) From Ven T. Chow – Open Channel Hydraulics AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  31 2. 5. TUNNELS 2. 5. 1 Tunnels often provide an appropriate solution for water conveyance in mountainous areas. Tunnels for SHP are generally of two types. †¢ Unlined tunnels †¢ Concrete lined tunnels On SHP tunnels are usually used as part of the water ways system and not subject to high pressures. . 5. 2 Unlined tunnels: Unlined water tunnels can be used in areas of favourable geology where the following criteria are satisfied: a) Rock mass is adequately water tight. Rock surfaces are sound and not vulnerable to erosion (or erodible zones b) are suitably protected. The static water pressure do es not exceed the magnitude of the minor field c) rock stress. Controlled perimeter blasting is recommended in order to minimize over break and produce sound rock surfaces. Additionally, this construction approach tends to produce relatively uniform surfaces and minimizes the hydraulic roughness of the completed tunnel surfaces. Design velocities of 1. 5 to 2. 0 m/s on the mean AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  32 cross section area give optimal cross section design. It is normal practice to provide a 100mm thick reinforced concrete pavement over leveled and compacted tunnel muck in the invent of the tunnel. IS 4880: Part 3 provides additional guidance on the hydraulic design of tunnels and on the selection of appropriate Manning’s â€Å"n† values. 2. 5. 3 Lined Tunnels Where geological are unfavourable it is often necessary to provide concrete linings for support of rock surfaces. IS4880: Parts 1-7 give comprehensive guidelines on the design of lined tunnels. 2. 5. 4 High Pressure Tunnels Design of high pressure tunnels is not covered in this standard. For high pressure design, if required, the designer should consult an experienced geotechnical engineer or engineering geologist. For the purpose of this standard, high pressure design is defined as tunnels subject to water pressures in excess of 10m relative to the crown of the tunnels. 2. 5. 5 Reference on Tunnels IS Standards: IS 4880 â€Å"Code of Practice for the Design of Tunnels Conveying Water†. Other References: Norwegian Hydropower Tunnelling† (Third volume of collected papers) Norwegian Tunneling Society Trondheim, Norway. www. tunnel. no Notably: Development of Unlined Pressure Shafts and Tunnels in Norway, by Einar Broch. 2. 6. CULVERTS AND CROSS-DRAINAGE WORKS Small hydro projects constructed in hilly areas usually include a lengthy power canal routed along a hillside contour. Lateral inflows from streams and gullies intercepted by SHP canals often transport large sediments loads which must be prevented from entering the canal. The first line of defense is the canal upstream ditch which intercepts local lateral runoff. The flow in these chains must be periodically discharged or the drain capacity will be exceeded. Flow from these drains is usually evacuated via culverts passing underneath the canal. These culverts would normally be located where gullies or streams cross the canal alignment. The capacity of canal ditches should be decided taking into consideration the average distance between culverts. In the rare cases when distance between culverts is excessive, consideration should be given to diverting AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  33 itch flows across the canal in flumes or half round pipes to discharge over the downhill side of the canal at suitable locations. Culverts are usually required where the canal route crosses gullies or streams. Culverts at these points provide for flow separation between lateral inflows and canal inflows and often present the most economical solution for crossing small but steep v alley locations. It is recommended that culverts design be based on the following hydrological criteria. †¢ For mini hydro projects, 1 in 10 year flood (Q10) †¢ For small hydro projects, 1 in 25 year flood (Q25) Where it is practical to extract the necessary basin parameters, the procedures given in Section 1. 4 should be applied. Otherwise design flows should be estimated from field measurements of cross section area and longitudinal slope at representative cross section of the gully or side stream. A survivable design approach is further recommended with canal walls strengthened to allow local over topping without damage to the canal integrity when floods exceed the design flood values. Detailed hydraulic design should be based on information from reliable texts or design guidelines – such as: â€Å"Design of Small Bridges and Culverts† Goverdhanlal †¢ †¢ 2. 7 2. 7. 1 â€Å"Engineering and Design – Drainage and Erosion Control†. Engineering Manual EM 1110-3-136 U. S. Army Corps of Engineers (1984) www. usace. army. mil/publications/eng-manuals Manufacturer’s guides, notably: – American Concrete Pipe Association www. concrete-pipe. org â⠂¬â€œ Corrugated Steel Pipe Institute www. cspi. ca Power Canal Surges Power canals that are not provided with escape weirs near their downstream end will be subject to canal surges on rapid load rejections or load additions. The rejection surge will typically cause the downstream water level to rise above static level and may control the design of canal freeboard. For load additions there is a risk that the level will fall to critical at the downstream end and restrict the rate at which load can be taken on by the unit. The following formulae taken from IS 7916: 1992 can be used to estimate the magnitude of canal surges. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  34 Maximum surge height in a power channel due to load rejection may be calculated from the empirical formulae given below: For abrupt closure hmax = K 2 + 2 Kh For gradual closure within the period required for the first wave to travel twice the length of the channel: K hmax = + V . h / g 2 Where: hmax = maximum surge wave height, K = V2/2g = velocity head, V = mean velocity of flow, and area of cross sec tion h = effective depth = top width †¢ Maximum water level resulting from a rejection surge at the downstream of a canal: Maximum W. L. = Yo + hmax †¢ Minimum water level resulting from by a start up surge at the downstream end of a canal: Minimum W. L. = YS – hmax Where: Yo YS = steady state downstream water level static downstream water level. The maximum water level profile can be approximated by a straight line joining the maximum downstream water level to the reservoir level. 2. 7. 2 Canal Surges on Complex Waterways: For waterway systems comprising several different water conductor types, the above equations are not applicable. In such cases a more detailed type of analysis will be required. The U. S. National Weather Service FLDWAV computer program can be used to solved for the transient flow conditions in such cases (Helwig, 2002). 2. 7. 3 References IS Standards cited: IS 7916: 1992 â€Å"Open Channel – Code of Practice†. Other References â€Å"Application of FLDWAV(Floodwave) Computer Model to Solve for Power Canal Rejection Wave for Simple and Complex Cases†. P. C. Helwig Canadian Society for Civil Engineering Proceedings, Annual Conference Montreal, Canada (2002). AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  35 3. HYDRAULIC DESIGN OF DESILTERS 3. 1 BACKGROUND Sediment transported in the flow, especially particles of hard materials such as quartz, can be harmful to turbine components. The severity of damage to equipment is a function of several variables, notably: sediment size, sediment hardness, particle shape, sediment concentration and plant head. The control of turbine wear problems due to silt erosion requires a comprehensive design approach in which sediment properties, turbine mechanical and hydraulic design, material selection and features to facilitate equipment maintenance are all considered (Naidu, 2004). Accordingly the design parameters for desilter design should be made in consultation with the mechanical designers and turbine manufacturer. Where the risk of damage is judged to be high a settling basin (or desilter) should be constructed in the plant waterway to remove particles, greater than a selected target size. 3. 1. 1 Need The first design decision is to determine whether the sediment load in the river of interest is sufficiently high to merit construction of a desilter. There is little guidance available on this topic; however, the following limits are suggested by Naidu (2004): Table 2. 2. 3/1. 0 Concentration Suggested Maximum Allowable Sediment versus Plant Head. Parameter Head Maximum allowable sediment concentration Low and Medium Head Turbines ? 150 m High Head Turbines 150 m 200 ppm 150 ppm 3. 1. 2 Removal Size There are also considerable divergences of opinion on the selection of design size for sediment removal. Nozaki (1985) suggests a size range of between 0. 3 mm to 0. 6 mm for plant heads ranging from 100 m to 300 m. Indian practice is to design for a particles size of 0. 20 m regardless of head. Some authors suggest that removal of particles smaller than 0. 20 mm is not practical. The adoption of 0. 20 mm is the design (target) sediment size is recommended for Indian SHP designs. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  36 3. 1. 3 Types of Desilters There are two basic types of desilters: Continuous flushing type Intermittent flushing type Guidelines for design of both types are given in this section. 3. 2. DESIGN CONSIDERATIONS 3. 2. 1 Data Requirements (Small Hydro Plants) It is recommended that a program of suspended sediment sampling be initiated near the intake site from an early stage during site investigations to ensure that sufficient data is available for design. The sampling program should extend through the entire rainy season and should comprise at least two readings daily. On glacier fed rivers where diurnal flow variations may exist, the schedule of sampling should be adjusted to take this phenomenon into account and the scheduled sampling times be adjusted to coincide with the hour of peak daily flow with another sample taken about twelve hours later. While it is often assumed that sediment load is directly related to flow, this is only true on the average, in a statistical sense. In fact it is quite likely, that the peak sediment event of a year may be associated with a unique upstream event such as a major landslide into the river. Such events often account for a disproportionately large proportion of the annual sediment flow. Therefore, it would also be desirable to design the sediment measurement program to provide more detailed information about such events, basically to increase the sampling frequency to one sample per 1 or 2 hours at these times. A five year long sediment collecting program would be ideal. Less than one monsoon season of data is considered unsatisfactory. Some authors suggest that the vertical variation of sediment concentration and variations horizontally across the river be measured. However, on fast flowing rivers inherent turbulence should ensure uniform mixing and sampling at one representative point should be sufficient. The data collected in a sediment sampling program should include: †¢ Mean daily concentration of suspended sediment (average of two readings twelve hours apart) †¢ Water temperature †¢ Flow (from a related flow gauging program) The following additional information can then be derived from collected samples. AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  37 †¢ †¢ †¢ A sediment rating curve (sediment concentration versus flow – where possible) Particle size gradation curve on combined sample Specific gravity of particles. It is also recommended that a petrographic analysis be carried out to identify the component minerals of the sediment mix. It is likewise recommended that experiments be made on selected ranges of particles sizes to determine settling velocities. A further discussion on the subject of sediment sampling is given in Avery (1989) The characteristics of the sediment on a given river as obtained from a data collection program will assist in selection of appropriate design criteria. 3. 2. 2 Data Requirements (Mini Hydro Plants) On mini hydro projects where resources and time may not be available to undertake a comprehensive sampling program, selection of design parameters will depend to a great extent on engineering judgment, supplemented by observations on site and local information. The following regional formula by Garde and Kothyari (1985) can be used to support engineering decision making. 0. 19 ?P ? 0 Vs = 530. 0 P0. 6. Fe1. . S0. 25 Dd . 10 .? max ? ?P? Where Vs = mean sediment load in (tonnes/km2/year) s = average slope (m/m) Dd = drainage density, as total length of streams divided by catchment area (km/km2) P = mean annual precipitation (cm) Pmax = average precipitation for wettest month (cm) Fe = ground cover factor, as below: 1 Fe = [0. 80 AA + 0. 60 AG + 0. 30 AF + 0. 10 AW ] ? Ai = arable land area AA = grass land area (all in km2) AG AF = forested area AW = waste land area (bare rock) 3. 2. 3 Design Criteria The principle design criteria are: 1. The target size for removal (d): d = 0. 20 mm is recommended 2. Flushing flow: QF = 0. 2 QP is recommended 3. Total (design) flow: QT = QP + QF = 1. 2 QP. Where QP is plant flow capacity in (m3/s). AHEC/MNRE/SHP Standards/ Civil Works – Guidelines For Hydraulic Design Of Small Hydro Plants /May 2011  Ã‚  38 3. 2. 4 Siting The following factors control site selection 1. A site along the water way of appropriate size and relatively level with respect to cross section topography 2. A site high enough above river level to provide adequate head for flushing. For preliminary layout a reference river level corresponding to the mean annual flood and minimum flushing head of 1. 0 m is recommended. In principle a desilting tank can be located anywhere along the water conductor system, upstream of the penstock intake. Sometimes it is convenient to locate the desilting basin at the downstream end of the waterway system where the desilter can also provide the functions of a forebay tank. However, a location as close to the head works is normally pref erred, site topography permitting. 3. 3 Hydraulic Design A desilter is made up of the following elements: †¢ Inlet section Settling tank †¢ Outlet section †¢ †¢ Flushing system 3. 3. 1 How to cite Hydraulic Design of Small Hydro Plants, Essay examples

Friday, December 6, 2019

Genre Knowledge in Disciplinary Communication †MyAssignmenthelp

Question: Discuss about the Genre Knowledge in Disciplinary Communication. Answer: Introduction Psychometric tests provide a relatively and accessible simple method to explain an individuals preferred way to improve and learn. Multiple Intelligence tests help to understand seven types of intelligence of human beings and Emotional Intelligence helps an individual to show sympathy to others within a setting. Prior starting with this essay, I have completed two of my self-assessment tests, Emotional Intelligence test by Daniel Goleman and Multiple Intelligence Test by Howard Gardner. My cousin and sisters also did this test keeping me in their minds. Moreover, I tried to amalgamate the findings into Johari Window to find out my strengths and weaknesses. Johari Window has four quadrants and it helps to accept and convey the feedback of near ones representing the four quadrants. Johari Window has 55 adjectives from which an individual has to choose a few those represent the person. After that, peer, friend or colleague would be presented the same set of adjectives to select a few that they think best describe the person (Berland 2017). The Open' arena describes the person that both subject and peers select in the grid. Open quadrant tells about traits or qualities and both subject and peers perceive about this (Berkenkotter and Huckin 2016). Multiple Intelligence tests provided me with seven types of intelligence score and my cousin and sister also took the tests. Open arena gives me understanding of my intrapersonal and interpersonal qualities. Interpersonal quality provides the ability to relate to others, it interprets communication and behaviour of the person and it also makes out the relationship between people and the situations including people. Intrapersonal intelligence helps me to understand self-awareness regarding personal objectivity, personal cognisance, the capability to understand myself and one's need for change. My peers, my cousin and sister also thought the same that this intelligence will help me to do human contact, teamwork, cooperation and self-reflection. Additionally, Hidden quadrant is about the adjectives those are not selected by the peers, but by the subject only. These qualities are not known by the peers. Logical and mathematical intelligence is one such aspect in which people do not know much about me. I am good at detecting pattern and scientific reasoning. I can analyse the problem and perform mathematical calculation well and fast. I can handle numbers and logic well. In addition, Blindspot' quadrant tells about the qualities that the subject does not know and peers can understand the qualities (Hillson and Murray-Webster 2017). I was really amazed to know that my cousin and s isters provided me good rating at my linguistic and spatial-visual perceptions. My sister and cousin possibly do know about my linguistic intelligence and this intelligence is about words and language. Therefore, I am possibly good at speaking with people, interpreting and explaining the things in front of the people. Sometimes, I do not feel confident to articulate the matters via language to the people, thus I can make the relationship between communication and meaning. Visual perception helps me to understand and create the visual images as well as pictorial imagination and presentation. Finally, unknown quadrant tells about qualities that neither my peers and nor I know about. These sections can be musical and bodily-kinaesthetic intelligence. In addition, emotional intelligence is something that I do not know much and I took the test and I got 46. Emotional intelligence tells me that I have a good relationship with my colleagues and classmates and sometimes, it is difficult for me to work with. From the discussion of psychometric tests, I have understood that my strength lies in the interpersonal communication and this interpersonal communication will help me to interpret moods from facial expressions and I will demonstrate feelings through body language. Moreover, people do not understand my strength regarding the linguistic or the speaking ability. I think, it is my quality to communicate effectively with the individuals and it will help me to gain the positive vibe from the co-workers in the future. Linguistic intelligence helps me to write the set of instruction and speak on a subject without any hesitation. In addition, I can edit or write the speech. On the other side, my weakness lies in the visual and spatial perception and I fail to understand the relationship between space and effect. This weakness can lead to face the issue of making a presentation and interpret a painting. In addition, I have been facing the issue of emotional intelligence. As stated by Van Deur sen et al. (2015), emotional intelligence is the capacity of knowing the control and expresses the emotions to handle the relationship empathetically. Lack of emotional intelligence will lead me to create lots of arguments with the co-workers in the future and I think that people are overly sensitive. Lack of emotional intelligence can lead me to refuse others point of view regarding a matter. Moreover, I have been facing the issue of kinaesthetic or bodily intelligence and this issue will lead me to lack of physical agility and balance, eye and body coordination at the same time. I will try to develop my emotional intelligence through finding the connections between my feelings with other. In addition, I will try not to interrupt about any subject and I will try not to judge or edit the feeling so quickly. I am trying to connect the feelings of mine with the thought process during the time of decision-making. In addition, I will try to improve my spatial language in everyday interactions and I will learn about visualisation along with building the structure of storytelling. Interpersonal communication has its effect on the feelings of others in a planned way. In addition, my strength is in intrapersonal communication also and I am able to decide one's own aim; I am able to share their personal changes required to gain the objectives. On the other side, I lack the qualities of emotional intelligence that is required to work in a culturally diverse global organisation. I studied in the school where many of the students were from the multicultural and diverse ethnic group. I did not face any difficulties to communicate with them. I want to enhance my patience while working with my colleagues in the multicultural working environment and I need to respect all people irrespective of their religious beliefs and norms. In the multicultural workplace, people come from a different section and I want that my behaviour would be socially-acceptable professional standards. The people may speak in the native language and their phrases might be inappropriate in the wor kplace. I want to develop my sensitivity skill in order to work in a culturally diverse workplace and getting along with the global citizenship. I want to develop the concept of willingness to learn as culturally develop workplace provides me with the chance to work with different culture, practices and customs. Professional collaboration is very important in order to work with different cultural belief people with inappropriate workplace conversation. Diversity in the workplace provides the employers with talents, skills and experience and it helps to create innovation within the organisation (Goetsch and Davis 2014). The people have different languages and I will get the chance to learn different languages and it will grow my talent pool. I will develop the performance through understanding the equality of the people. My interpersonal communication is good and therefore, I will not face any trouble to work with different types of people from the diverse ethnic background. In Accenture Australia, it provides the employees with training and resources to understand the cultural diversity to work effectively across the culture. For example, cross-cultural awareness will create maximum value for the employees and the employees show respect to different religious people. Creativity and innovation enable the workforce to build the broader the skill and enables to focus on the outcomes. Conclusion It has been observed that psychometric tests provided me with the ideas of strengths and weaknesses my intelligence and qualities. Johari Window model helps me to find out the strengths and weaknesses compared to the findings shared by the peers, my cousin and sisters. I have understood that I have strengths regarding interpersonal, intrapersonal and linguistic, whereas, I have weaknesses on emotional intelligence and spatial intelligence. I have made improvement plan to understand the emotions of others in the workplace. In order to work in a culturally diverse organisation, I have to improve my strengths on patience, sensitivity and unbiased on situations. Reference List Berkenkotter, C., and Huckin, T. N. 2016.Genre knowledge in disciplinary communication: Cognition/culture/power. Abingdon: Routledge. Berland, A. 2017. Using the Johari Window to explore patient and provider perspectives.International Journal of Health Governance,22(1), pp.47-51. Gilbert, D., McKee, A., Spreitzer, G., and Amabile, T. 2017.Happiness (HBR Emotional Intelligence Series). Harvard Business Press. Goetsch, D. L., and Davis, S. B. 2014.Quality management for organizational excellence. Upper Saddle River, NJ: Pearson. Hillson, D., and Murray-Webster, R. 2017.Understanding and managing risk attitude. Abingdon: Routledge. Van Deursen, A. J., Bolle, C. L., Hegner, S. M., and Kommers, P. A. 2015. Modelling habitual and addictive smartphone behaviour: The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age, and gender. Computers in human behaviour,45, pp.411-420.

Friday, November 29, 2019

Are the SAT Subject Tests Changing

Are the SAT Subject Tests Changing SAT / ACT Prep Online Guides and Tips The SAT was redesigned in 2016- a huge revamp that has been linked to the Common Core and attempts to re-secure market share lost to the ACT.This may leave you wondering: what about SAT Subject Tests? Are they changing? Will there be new SAT Subject Tests modeledafter the main SAT redesign? In a word, no. At least, not now. So what does this mean?Well, for starters, it means that SAT Subject Tests will now be even more different from the regular SAT than they were before the SAT redesign. In this article, I’ll go over the implications of the â€Å"mismatch† between the redesigned SAT and the SAT Subject Tests. How are the formats different, and how should you approach these differences?I’ll also go over how the SAT redesign has changed how Subject Test content overlaps (or doesn’t) with the regular SAT.Finally, I will engage in some wild speculation (okay, fine, evidence-based speculation) about where the SAT Subject Tests may be going in the future. The SAT Subject Tests Are Not Changing First things first: the SAT Subject Tests are not changing. The College Board has come right out and said it! Of course, this doesn’t mean that the SAT Subject Tests will never change or be redesigned, but, at present, nothing has been announced. So you can expect that they will be administered in the same format for at least the next few years. However, the main SAT redesign does mean that there are now some additional differences between the regular SAT and the SAT Subject Tests. The winds of change...are not blowing for the SAT Subject Tests. Formatting Differences Between the New SAT and the SAT Subject Tests There were always some differences between the SAT and the SAT Subject Tests. While Subject Tests are each one hour long in a specialized subject area, the regular SAT is a multi-section, broad-content test with variable time lengths per section. This remains the case under the redesigned SAT. But with the redesign, there are a couple of additional differences between the two test types in question format and scoring.Let’s break them down: The redesigned SAT has only four answer choices per question, but mostSAT Subject Tests will continue to have five answer choices per question.The only exception is the foreign language Subject Tests, which have four answer choices per question. All things being equal, this means your chances of randomly guessing a correct answer on most SAT Subject Tests is 5% lower than on the main SAT (20% vs. 25%). This probably won’t make any real difficulty difference between the two exams because on a five-choice test like a Subject Test, there’s generally at least one really obviously wrong answer in the bunch. A bigger change is that the redesigned SAT has no penalty for guessing while the SAT Subject Tests will continue to have a penalty for wrong answers to discourage guessing. On Subject Tests with five answer choices (again, this is most of them), you'll lose 1/4 of a point for each incorrect answer. For the foreign language Subject Tests, which have four answer choices, you'll lose 1/3 of a point for each incorrect answer. This may actually make your test-taking strategy somewhat different between SAT Subject Tests and the regular SAT. Basically, you should definitely answer every question on the regular SAT, even if you have no idea of the answer because you lose nothing by guessing. In contrast, you might want to take a slightly more conservative approach on your Subject Tests and only guess when you can eliminate some answer choices. Otherwise, you run the risk of an extra penalty for getting the answer wrong. Don't get stung by wrong answer penalties! Subject Tests That Might Line Up With the New SAT...Or Not In addition to formatting changes, the SAT redesign also involved some pretty major content changes. We’ve reviewed those changes in-depth, but here’s a quick summary: All questions for Reading are now passage-based, and not all of the passages will be literary; there will be nonfiction passages. All questions on Writing will also be passage-based, and the emphasis has shifted a little more towards questions on writing style and away from questions on arcane grammar mechanics. The new Math sectionhas less geometry, and questions are rooted more in real-world situations and skills you learned in class and less on abstract â€Å"logic† type questions. The overall test is now weighted more heavily towards the Math section. Reading and Writing together form Evidence-Based Reading and Writing for 800 points and Math stays at 800 points (so the total is 1600 points). If we compare the redesigned SAT content to Subject Test content, we’ll see a surprising cadre of similarities and differences. Subjects that have never before overlapped with the main SAT will now have some points of overlap, and some Subject Tests, like Math, that used to share lots of material withthe main SAT aren’t all that similar to the redesignedSAT. These next sections will go over what material on Subject Tests is also covered on the SAT and how you can use this to your advantage when you prepare for both the main SAT and the Subject Tests. Subject Tests: Math 1 and Math 2 Overlaps with: SAT Math Both of the Subject Tests in Math still overlap with the Math section of the revised SAT, but less than they did before.While many similar topics are covered, there are some key differences between the way questions are presented. First, the new SAT Math has a no-calculator section and free-response questions. The SAT Math Subject Tests are all multiple choice, and calculators are allowed the entire time. Second, the redesigned SAT focuses much more on â€Å"real-world† style problems, mathematical modeling, and reading and interpreting data. Given this focus, the scope of the math tested on the exam has narrowed. (For one thing, there’s much less geometry). The SAT Subject Tests are much more about testing how well you’ve learned a variety of more advanced mathematical concepts, so you can expect a broader range of topics and more problems like what you would see on a high school math test. Math II covers evenmore advanced topics than Math I. Because of this, Math II overlaps with the new SAT Math section even less than Math I does. There’s just not enough room on Math II to cover some of the more basic math concepts that Math I and SAT Math both focus on. Here are the topics that still overlap among the three tests. You should be aware, however, that shared topics are weighted completely differently on each exam! As mentioned above, the new SAT Math is much less focused on geometry of all types than either of the Math Subject Tests, and it's much more interested in â€Å"real-world† style problems and mathematical modeling. Overlapping topics on all three math exams: Basic statistics: mean, median, mode, reading graphs Coordinate geometry for lines and circles Calculating volume of 3-D solids from formulas Basic trigonometry: right triangles, identities Creating mathematical models Manipulating and solving expressions, equations, and inequalities Ratios and proportions Complex numbers Math I and SAT Math both include some Euclidean plane geometry for angles, circles, and triangles; Math II does not (Euclidean geometry concepts are assessed via coordinate and 3-D geometry).Math II and SAT Math now also both cover radians, which are not covered on Math I. So will studying for Math Subject Tests help prepare you for the SAT Math section? Certainly, reviewing math topics that are covered on both the Subject Test you are taking and the main SAT Math section will be helpful, but the questions are presented differently, and there are topic areas that don’t overlap. This is particularly truefor Math II. If you’ve just taken Math I or Math II and you are now preparing for SAT Math, make sure that you aren’t relying too much on your calculator or multiple-choice strategies. These won’t be with you for the entire SAT Math section. Will studying for the Math section help with the math-based Subject Tests? Again, it will help you somewhat in that you will be studying some overlapping topics. But you’ll need to be prepared both for the topics that don’t overlap and for the different exam formats. All these math exams! It's enough to make your head spin. Subject Test: Literature Overlaps with: SAT Reading In some ways, SAT Reading is closer to the Subject Test in Literature than it was before because all of the questions on the Reading section are now passage-based, as in the Literature Subject Test. However, while Literature has only literary and poetic passages, the Reading section will now include a number of nonfiction passages as well. This means that, while the close-reading skills you develop for Literature will help you with the passage-based questions on SAT Reading, you will be reading and answering questions about some very different types of passages. You can expect to see nonfiction and historical passages on SAT Reading that you will need to read with an eye for identifying the evidence authors use to support their claims. By contrast, the SAT Literature Subject Test will have much more of an emphasis on literary devices. So will studying for Literature help prepare you for Reading? Sort of, in that it will hone your close-reading skills. However,you need to make sure you also know how to read non-fiction and historical passages for comprehension and to identify evidence, which really does not play into the Literature test at all. Conversely, will studying for Reading help prepare you for Literature? It will help a little bit, but the passages on Literature are much more, well, literary, so you will need to make sure you have a stronger grasp of literary devices than SAT Reading requires. Also, the Literature Subject Test has poetry, which is a whole different animal; for more guidance on that, see my guide to the Literature Subject Test. Read on to learn why this might be on your SAT Reading test! Subject Tests: US History and World History Overlaps with: SAT Reading This may surprise you, but you might now find some minor overlap between your US History or World History Subject Test and SAT Reading.SAT Reading now includes, in one of its five passage sections, â€Å"One passage or a pair of passages from either a U.S. founding document or a text in the great global conversation they inspired.† (see the College Board page for Inside the SAT Reading). The College Board claims that you won’t need any outside knowledge to understand the documents they choose for the Reading test, but any contextual knowledge you have about â€Å"U.S founding documents† (i.e. the Declaration of Independence, the Gettysburg Address, etc.) and their global counterparts certainly won’t hurt you. And, if you are taking the US History or World History Subject Test, chances are you have some of that outside contextual knowledge. Additionally, both history Subject Tests include some questions on primary source analysis- a similar skill to the analysis of historical documents on Reading. So, will studying for US History or World History help prepare you for the Reading section? It will help a little bit, by giving you historical context and the skills to close-read historical passages.Will studying for SAT Reading help prepare you for US History or World History? Again, it will help a little bit, depending on what â€Å"founding documents† you are exposed to in your studying. Subject Test: Biology Overlaps with: SAT Reading and Math The new SAT involves an increased amount of reading charts and graphs in the Reading, Writing, and Math sections.The Biology Subject Test also involves questions that test your knowledge of reading graphs and charts. So, learning to read graphs and charts for one of these exams will help you with this skill for all the other exams. Basically, making sure you know how to read graphs and charts properly is a skill that will help you on a number of College-Board administered exams, and also life. If jellyfish could read charts, they probably would have taken over the world by now. As you can see, while there is overlap between certain Subject Tests and the new SAT, none of the overlap is substantial enough that prepping for one really preps for the other in any significant way.Preparing for Subject Tests, in general, certainly won’t hurt your SAT performance or vice-versa, but it definitely won’t replace or even hugely augment specific prep for the exam you are taking. What Could Be Next for the SAT Subject Tests? So is a revamp coming for the SAT Subject Tests anytime soon?Well, let’s think about what niche the Subject Tests fill compared to the main SAT. The SAT is meant to be a college entrance exam that tests a wide variety of skills and predicts performance in college (it historically hasn’t really done this, but that’s the idea).The SAT was revised for a lot of reasons, but overall the goal is to make the SAT more predictive of college success and less based on whether you could afford a tutor or even a prep book to learn strategies. (Do I think the College Board met their goal? That’s a story for another day.) The SAT Subject Tests, however, never purported to be the kind of exam that any smart person could do well on. They have always been meant to showcase a particular talent or expertise in a subject. Because of this, I don’t think it’s terribly likely that there are any major content changes for the SAT Subject Tests coming anytime soon. However, I do think it’s a little bizarre to administer two kinds of SAT tests with different scoring mechanisms and a different number of answer choices. There may well be a more minor SAT Subject Test revision just for the sake of creating consistency between the two tests. Thus, while I don’t think a major revamp in content is coming soon, I do think it’s possible that there will minor revisions to make the tests more harmonious in format. Harmonious like these creepy singing angels. Key Takeaways Are the SAT Subject Tests changing? No! There will be no newSAT Subject Testsfor 2016. This means that, unlike on the main SAT, most Subject Tests have five answer choices per question, and there’s a -0.25 point penalty for every wrong answer. The exception is foreign language Subject tests, which have four answer choices per question, and there's a 1/3 point penalty for every wrong answer. The changing format of the SAT does mean that there may be some new and different overlaps between Subject Tests and main SAT content. In terms of future revisions, I don’t think there’s going to be a major content revision any time soon, but there may be a formatting revision to bring the two tests into greater harmony. What's Next? Trying to decide which SAT Subject Tests to take? Let us help.Or maybe you want some help registering for your chosen Subject Tests. Confused about the new SAT? See our guide to the new Reading sectionand our guide to redesigned SAT math. With the redesign, you might consider if the new SAT or the ACT is going to be better for you. Need a little extra help prepping for your Subject Tests? We have the industry's leading SAT Subject Test prep programs (for all non-language Subject Tests). Built by Harvard grads and SAT Subject Test full or 99th %ile scorers, the program learns your strengths and weaknesses through advanced statistics, then customizes your prep program to you so that you get the most effective prep possible. Learn more about our Subject Test products below: